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With developments of semi-empirical interatomic potentials for realistic materials systems,
atomistic approaches to a wide range of bulk and nanostructured materials become more and
more feasible. This article outlines a recently developed semi-empirical interatomic potential
model, the second nearest-neighbor modified embedded-atom method that shows a strong
applicability to multicomponent systems. It is shown that the interatomic potentials can well
reproduce fundamental physical properties of representative materials systems. Examples are
used to illustrate the applications of the atomistic approach to calculation of fundamental
physical properties of both nano and bulk structural materials such as thermodynamic, elastic,
interface, and defect properties necessary to understand the materials behavior and to serve as
input to larger-scale simulations.
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1. Introduction

With continuously increasing industrial demands for
better materials performance, an elaborate control of
structural evolution and materials properties becomes highly
necessary. An elaborate control of structures and materials
properties requires better understanding of the materials
behavior from a more fundamental level, e.g., the atomic
level. Atomistic simulations (molecular dynamics or Monte
Carlo) can be a useful tool to analyze and predict phase
transformations kinetics, defects, structural evolutions, and
mechanical behaviors of materials. Moreover, fundamental
physical quantities such as grain boundary energy, diffusiv-
ity, and interactions between defects computed from atom-
istic simulations can be used as input data for larger-scale
simulations.

First-principles (FP) calculations usually deal with less
than a thousand atoms, which is insufficient to handle lots of
materials phenomena. Using semi-empirical interatomic

potentials, the number of atoms in atomistic simulations
can be increased by several orders of magnitute. In such
simulations, the reliability of the interatomic potential is
crucial.

A reliable atomic potential should reproduce various
physical properties of an element, such as elastic properties,
structural properties, defect properties, surface properties,
and thermal properties. Several dozens of interatomic
potential models have been published.[1] These models
were mostly for a small group of elements. One had to
use different formalisms for elements of different crystal
structures. It was difficult to describe alloy systems
consisting of elements with different structures. In contrast,
the modified embedded-atom method (MEAM[2]) potential
is highly applicable because it can describe atomic poten-
tials of wide range of elements (fcc, bcc, hcp, diamond, and
even gaseous elements) using a common formalism while
achieving good agreements with experimental results or FP
calculations. The MEAM was created by Baskes,[2] by
modifying the EAM[3] so that the directionality of bonding
is considered. The original MEAM only considers the
interactions among first nearest-neighbor atoms. Recently,
the MEAM was modified once again by Lee and Baskes[4,5]

such that the interactions among second nearest-neighbor
atoms were partially considered and thus some critical
shortcomings of the original MEAM were overcome. The
generalized MEAM (second nearest neighbor or 2NN
MEAM) has been applied to a wide range of elements
including bcc,[5] fcc,[6] hcp[7] metals, manganese,[8] dia-
mond structured elements such as carbon,[9] silicon,[10]

germanium,[11] gaseous elements (H, N, O),[2] and to binary
systems between different types of elements, e.g., Fe-Cu,[12]

Fe-Pt,[13] Fe-Ti,[14] Fe-Mn,[8] Ni-W,[15] Fe-C,[16] Fe-N,[17]

Fe-H,[18] Ti-C,[19] and Ti-N[19] systems.
The performance of the 2NN MEAM potentials of some

elements and alloy systems will be demonstrated by
applying them to describe fundamental physical properties
of relevant materials. This article will then show the
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applicability of the atomistic approaches based on the 2NN
MEAM to provide fundamental physical quantities and to
analyze basic materials phenomena.

2. Interatomic Potential

In the MEAM, the total energy of a system is given in the
following form:

E ¼
X

i

Fið�qiÞ þ
1

2

X

jð6¼iÞ
Sij/ijðRijÞ

2
4

3
5; ðEq 1Þ

where Fi is the embedding function for an atom i embedded
in a background electron density �qi; and Sij and /ij(Rij) are
the screening function and the pair interaction between
atoms i and j separated by a distance Rij. For energy
calculations, the functional forms for Fi and /ij should be
given. The background electron density at each atomic site
is computed by considering the directionality of bonding,
that is, by combining several partial electron density terms
for different angular contributions with weight factors t(h)

(h = 1-3). Each partial electron density is a function of
atomic configuration and atomic electron density. The
atomic electron densities qa(h) (h = 0-4) are given as

qaðhÞðRÞ ¼ qo exp½�bðhÞðR=re � 1Þ�; ðEq 2Þ

where qo is the atomic electron density scaling factor and
b(h) is the decay lengths are adjustable parameters, and re is
the nearest-neighbor distance in the equilibrium reference
structure. A specific form is given to the embedding
function Fi, but not to the pair interaction /ij. Instead, a
reference structure where individual atoms are on the exact
lattice points is defined and the total energy per atom of the
reference structure is estimated from the zero-temperature
universal equation of state developed by Rose et al.[20]

Then, the value of the pair interaction is evaluated from the
known values of the total energy per atom and the
embedding energy, as a function of the nearest-neighbor
distance. In the original MEAM,[2] only first nearest-
neighbor interactions are considered. The neglect of the
second and higher nearest-neighbor interactions is made
effective by the use of a strong many-body screening
function.[21] The consideration of the second nearest-
neighbor interactions in the modified formalism is imple-
mented by adjusting the screening parameters, Cmin, so that
the many-body screening becomes less severe. In addition, a
radial cutoff function[21] is applied to reduce the calculation
time. Details of the (2NN) MEAM formalism have been
published in the literature[2,4-7] and will not be repeated
here. Some calculated physical properties of Al and Fe are
presented in Table 1, in comparison with available exper-
imental data.

Most of the properties listed in Table 1 are 0 K properties.
It is shown that thermal properties are also correctly
reproduced. The calculated temperature dependence of bulk
modulus shows a good agreement with experimental data,[22-26]

as illustrated in Fig. 1. The composition dependences of

various fundamental properties in alloy systems are also
correctly reproduced. As an example, the lattice parameter,
cohesive energy, and bulk modulus of various stable and
unstable compounds in the Ni-W binary system are compared
with experimental or FP data in Table 2.

3. Atomistic Computation of Physical Properties

In this section, it is demonstrated that some physical prop-
erties which are difficult to measure experimentally can be
computed rather efficiently using the atomistic approach. The
properties include interfacial energy, grain boundary diffu-
sivity, and stacking fault energy (using Fe as an example).

3.1 Computation of Interfacial Energy

The a/c interfacial energy of Fe is a key physical quantity
controlling nucleation and growth kinetics of a/c phase
transformations in steels. Experimental measurement of
interfacial energy, especially its anisotropy (orientation
dependency) is not trivial. Those quantities can be rather
easily obtained by an atomistic computation. Figure 2(a)

Table 1 Calculated physical properties of Al and Fe
using 2NN MEAM potentials,[5,6] in comparison
with experimental data

Property MEAM-Al (exp.) MEAM-Fe (exp.)

C11, 10
12 dyne/cm2 1.143 (1.143) 2.430 (2.431)

C12, 10
12 dyne/cm2 0.619 (0.619) 1.380 (1.381)

C44, 10
12 dyne/cm2 0.316 (0.316) 1.219 (1.219)

Ev
f, eV 0.68 (0.68) 1.75 (1.79)

QD, eV 1.33 (1.33) 2.28 (2.5)

EI
f, eV 2.49 (–) 4.20 (–)

E(100), mJ/m2 848 (1085(a)) 2510 (2360(a))

E(110), mJ/m2 948 (1085(a)) 2356 (2360(a))

E(111), mJ/m2 629 (1085(a)) 2668 (2360(a))

Dd(100), % +1.8 (+1.8) �1.1 (�0.2, �1.5)
Dd(110), % �8.9 (�8.5± 1.0) �1.5 (0)

Dd(111), % +1.0 (0.9± 0.5) �10.5 (�16.9)
DEbcc/fcc, eV/atom 0.12 (0.10(b)) 0.048 (0.082(b))

DEfcc/hcp, eV/atom 0.03 (0.06(b)) �0.018 (�0.023(b))
e(0-100 �C), 10�6/K 22.0 (23.5) 12.4 (12.1)

Cp (0-100 �C), J/molÆK 26.2 (24.7) 26.1 (25.5)

m.p., K 937 (933) 2000 (1811)

DHm, kJ/mol 11.0 (10.7) 13.2 (13.8)

DVm, % 6.7 (6.5) 4.0 (3.5)

Values listed are the elastic constants C11, C12, C44, the relaxed vacancy

formation energy Ev
f, the activation energy of vacancy diffusion QD, the

relaxed formation energy of self interstitial EI
f, the (100), (110), and (111)

surface energy E(100), E(110), and E(111) and surface relaxation Dd, the

structural energy differences DE, thermal expansion coefficient e, specific
heat Cp, melting point m.p, enthalpy change DHm, and volume change DVm

due to melting.

(a) Average value for polycrystal

(b) Thermodynamically assessed values (room temperature data)
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and (b) shows two different superstructures composed of
bcc and fcc Fe lattices with an interface according to the
Kurdjumov-Sachs (K-S) relation and with variable inter-
faces. From the energy difference between the superstruc-
ture and individual lattices, the a/c interfacial energy with
the K-S relation and average interfacial energy of random
interfaces can be calculated. The calculated K-S and
Nishiyama-Wasserman interfacial energies are 0.33 and
0.32 J/m2, respectively. The average value of random
interfaces is calculated to be 1.08 J/m2, which is comparable
with experimental value of 0.80 J/m2.[28] The ratio between
the average interfacial energy and surface energy is about
0.4 which is also comparable with experimentally measured
value of 0.38.[28] The grain boundary energies can also be
calculated using similar methods.[29]

3.2 Computation of Grain Boundary Diffusivity

As the grain size decreases the role of grain boundaries in
microstructural evolution becomes more and more decisive.
One of the main grain boundary phenomena is fast diffusion
or fast atomic mobility. Figure 3(a) shows the calculated self
diffusivity of bcc Fe using the present MEAM potential,[5]

showing a good agreement with experimental values.[30] By
comparing the overall diffusivity in a single crystalline
sample with that in a sample with a grain boundary, the
grain boundary diffusivity can be estimated. The calculated
grain boundary diffusivity of several types of grain bound-
aries is plotted in Fig. 3(b). Experimentally reported val-
ues[31] for the grain boundary diffusivity (dDGB) in bcc Fe
vary between 10�22 and 10�19 m3/s in a temperature range
of 700 to 1000 K. The calculated values in Fig. 3(b) are in
good agreement with experimental data. According to the
atomistic calculations, the ratio of the activation energy
between grain boundary diffusion and bulk diffusion is
around 20%, which is also in good agreement with
experimental value of 22%.[31]

3.3 Computation of Stacking Fault Energy

Because of the strong correlation between stacking fault
energy and deformation behavior of fcc metals, many efforts
are being made to calculate the stacking fault energy and
effects of alloying elements on it. Figure 4(a) shows the
effect of Mn on the intrinsic stacking fault energy in fcc
Fe[8] based on an atomistic calculation. Here, the stacking
fault energy in pure fcc Fe is set to be zero. According to the
present calculation, the stacking fault energy of fcc Fe
decreases up to about 5 at.% Mn and then increases with
increasing Mn content. Figure 4(b) shows the effect of Mn
on the stacking fault energy in various austenitic steels
obtained from experiments[32,33] or a thermodynamic cal-
culation.[34] Even though there are differences in the
absolute values between the present calculation and litera-
ture data and also among the literature data sets, all results
show a qualitative agreement in that the stacking fault
energy initially decreases with Mn addition and then
increases with further addition of Mn. Similar calculations
can be made for the effects of other alloying elements in
higher order alloy systems.

Fig. 1 Calculated bulk modulus of (a) pure Al and (b) pure Fe according to the 2NN MEAM interatomic potentials,[5,6] in comparison
with experimental data[22-26]

Table 2 Physical properties of various structures
in the Ni-W system calculated based on the MEAM
potential,[15] in comparison with experimental data
or FP calculation[27]

a, Å c, Å Ec, eV B, GPa

Exp FP MEAM Exp FP MEAM FP MEAM FP MEAM

D1a Ni4W 5.73 ÆÆÆ 5.73 3.553 ÆÆÆ 3.553 5.40 5.36 293 292

L12 Ni3W ÆÆÆ 3.58 3.62 ÆÆÆ ÆÆÆ 3.58 5.65 5.58 287 319

L12 NiW3 ÆÆÆ 3.84 3.86 ÆÆÆ ÆÆÆ 3.76 7.55 7.29 283 316

D019 Ni3W ÆÆÆ 2.53 2.56 ÆÆÆ 4.05 4.15 5.42 5.59 289 316

D019 NiW3 ÆÆÆ 2.76 2.76 ÆÆÆ 4.44 4.38 7.70 7.36 304 321
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Fig. 2 Superstructure composed of bcc and fcc Fe used for computation of (a) the K-S interfacial energy and (b) an average value of
random interfaces

Fig. 3 Calculated (a) self-diffusivity of bcc Fe in comparison
with experimental data[30] and (b) grain boundary diffusivity on
some grain boundaries in bcc Fe

Fig. 4 Effect of Mn on the intrinsic stacking fault energy of fcc
Fe (a) by the present MEAM calculation,[8] and (b) by experi-
ments[32,33] or thermodynamic calculation.[34] The stacking fault
energy of pure Fe is set to be zero in (a)
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4. Application of Atomistic Approaches

It is shown above that fundamental planar defect
properties can be reasonably predicted by atomistic com-
putations. The atomistic approach can be further applied to
analyze fundamental material phenomena in both bulk and
nanostructured materials.

4.1 Interactions Between Dislocations and Other Defects

The interactions between a dislocation and other defects
(solute atoms, other dislocations, precipitates, grain bound-
aries, etc.) are key factors for estimating the mechanical
properties from microstructures. As a first step of a
multiscale simulation scheme to predict mechanical prop-
erty of structural materials, calculations were performed on
the critical resolved shear stress (CRSS) for the movement
of an edge dislocation and effect of interstitial solute atoms
on CRSS. Figure 5 shows a bcc Fe lattice with an edge
dislocation, as an example, and the resultant stress-strain
curve of pure Fe and Fe with a carbon or nitrogen atom at
10 K. Since the lattice structure was set in a way that the
direction of burgers vector is parallel to the shear stress, the
CRSS can be directly read from the flow stress. However,
due to the unrealistically high strain rate given in the

molecular dynamics simulation, the CRSS can always be
overestimated by this simulation. The stress-strain curve in
Fig. 5(b) shows a decrease of the flow stress after the onset
of the yield point, and the lower bound of the flow stress
should be regarded as the more realistic CRSS value rather
than that at the yield point.

4.2 Plastic Deformation

Various plastic deformation mechanisms operate depend-
ing on the magnitude of the stacking fault energy. The
deformation mechanism in different materials systems and
the variation of the mechanism according to crystallographic
orientations can be effectively examined using molecular
dynamics simulations. Figure 6 shows that the deformation
in pure fcc Fe and fcc Fe-Ni alloys occurs differently
(martensitic twinning versus slip). It looks reasonable to
observe a deformation-induced martensitic transformation in
fcc Fe at room temperature and a slip in an fcc alloy
stabilized by adding an austenite-forming element, Ni.
Using these simulations on a wide range of alloys, the effect
of alloying elements on the deformation behavior of
structural metallic alloys and the probable correlation
between the magnitude of stacking fault energy and the
deformation mechanism can be investigated.

4.3 Thermodynamics of Nanoparticles

With advances in technology, the size of devices and
device materials are getting down to nanometer scale.
Various fundamental physical properties are expected to

Fig. 5 (a) A bcc Fe lattice with an edge dislocation and
(b) resultant stress-strain curve of pure Fe and Fe with a C or N
atom at 10 K based on atomistic simulation

Fig. 6 Plastic deformation in (a) fcc Fe (martensitic twinning)
and (b) fcc Fe–40%Ni (slip) under uniaxial loading along
<111> direction at 300 K
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change as the size decreases. A typical example of the size
dependency of physical properties is melting point depres-
sion. Figure 7 shows that the melting point depression of Au
nanoparticles is correctly reproduced by a molecular
dynamics simulation.[35] In addition to the melting point
of pure elements, all possible size effects on thermodynamic
properties of alloys and compounds can be investigated
using the atomistic approaches.

4.4 Atomistic Distribution in Alloy Nanowires

The chemical composition of Si1�xGex nanowires deter-
mines its electronic characteristics, thus it is regarded as one
of critical factors controlling advanced device performance.
Understanding the effects of various process conditions on
the atomic configuration in Si1�xGex nanowires is essential
for fine tuning materials properties. Figure 8 shows a
simulated atomic configuration and composition profiles
in the radial direction of Si1�xGex nanowires at various
thermodynamic process conditions (chemical potential dif-
ference between Si and Ge). The size dependency of the
alloy nanowire composition recently found and rational-
ized[38] can also be investigated in more detail by the
atomistic simulations.

4.5 Local Stress and Strain Distribution Around
a Quantum Dot

The misfit stress around a quantum dot (QD) plays a
decisive role in the evolution of the shape and vertical
alignment of the QDs, and it also has a significant effect on
the energy band gap of the QD during and after their
formation. Analysis of the local stress distribution around a
QD is therefore essential for successful fabrication of QD

structures. Figure 9 shows the calculated local strain
distribution in the vertical section at the center of a InAs/
GaAs QD system.[39] On the left is the distribution of the
hydrostatic component. The different gray scales represent
the state of the strain (tensile or compressive). On the right,
the planar and vertical components, as well as the hydro-
static component along the vertical line at the center of the
QD, are plotted as a function of distance from the substrate.
Both the hydrostatic strain and stress are shown to propagate
up to about 160 Å from the substrate. The corresponding
experimental value is about 150 Å.[40] The good agreement
in the range of the local strain between the experimental and
calculation results indicates the reliability of the MEAM
interatomic potential and the applicability of the atomistic
approaches to the design and control of morphological
evolution in nanostructures.

Fig. 7 Melting temperature of pure gold nanoparticle as a func-
tion of particle diameter,[35] in comparison with experimental
data[36,37]

Fig. 8 (a) A simulated atomic configuration and (b) composi-
tion profiles in the radial direction of Si1�xGex nanowires at vari-
ous thermodynamic process conditions. Dl is the chemical
potential difference between Si and Ge (eV)
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5. Summary

The examples of this article show that atomistic simu-
lation techniques based on the 2NN MEAM interatomic
potentials can be utilized to provide fundamental physical
properties (interface or grain boundary energy, diffusivity,
and stacking fault energy) necessary for advanced materials
and process design and also to analyze various materials
phenomena in both bulk and nanostructured materials.
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